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Abstract  Field activities in the Britannia Range (Transantarctic Mountains, Antarctica) highlighted new geological 
features around the so-called Byrd Glacier discontinuity. Recent field surveys revealed the occurrence of significant 
amounts of medium- to high-grade metamorphic rocks, intruded by abundant coarse-grained porphyritic granitoids. 
Most of the granitoids are deformed, with foliation parallel to the regional foliation in the metamorphics. Two main 
episodes of deformation are observed. Tight to isoclinal folds and penetrative axial plane foliation are related to the D1 
phase, open folds to the D2. The main foliation (D1) trends nearly E-W in agreement with the trend in the southern 
portion of the Byrd Glacier. In most outcrops, granitic dykes are folded and stretched by the D2 deformation, which 
shows similar characteristics with the D2 deformation south of the Byrd Glacier. This suggests the occurrence in the 
Ross orogen of an orogen-normal structure south and north of the Byrd Glacier. 
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Introduction 
The Ross orogen evolved during a Neoproterozoic-

early Paleozoic cycle of deposition and orogenesis 
spanning the breakup of Rodinia and the consolidation 
of Gondwanaland (Hoffman, 1991; Moores, 1991; 
Dalziel, 1997). It is exposed throughout the 3,500 km 
length of the Transantarctic Mountains (TAM). 

Figure 1. Satellite-image of the Byrd Glacier area and 
schematic map of Antarctica, with location of the study 
area. 

 

 Structural trends and the elongation of batholiths 
subparallel to the TAM, lead to the generally accepted 
model that the orogenic belt developed in response to a 

Cambro-Ordovician subduction zone outboard of and 
parallel to the present day TAM (e.g. Goodge, 2002). 

A striking exception to the structural and magmatic 
trends occurs in the Byrd Glacier. To the north the rocks 
are all plutonics and high-grade metamorphics (“Horney 
Formation” of Borg et al., 1989); to the south the rocks 
are primarily a Cambrian sequence (Byrd Group) of 
limestone, argillite, and conglomerate (Grindley 1963; 
Skinner 1964, Stump et al. 2004), with fold trends 
parallel to Byrd Glacier, approximately perpendicular to 
the trend throughout the TAM. 

Stump et al. (2004) proposed a working hypothesis 
that the Byrd Glacier discontinuity represents a terrane 
boundary, with movement of a terrane (“Beardmore 
microcontinent” of Borg et al., 1990) from the SSE 
colliding with crust to the north of the Byrd Glacier.  

Helicopter-supported field work, funded by the 
Italian Antarctic Programme (Project 4.2/2002), was 
carried out in austral season 2005/2006 in the Britannia 
Range (Fig. 1). The principal objectives of the project 
are summarised as follows: 

i) investigate the largely unstudied and unmapped 
metamorphic and intrusive rock units in the Britannia 
Range and improve the understanding of the tectonic 
evolution of the Byrd Glacier region; 

ii) compare different segments of the Ross Orogen 
in central TAM and Victoria Land; 

iii) test the hypothesis that the Byrd Glacier marks a 
major terrane boundary. 

Geological setting 
Three main rock units are exposed in the Byrd 

Glacier area: the Byrd Group and the Selborne Group 
(Stump et al., 2004), cropping out south of Byrd 
Glacier, and the Horney Formation (Borg et al., 1989) 
extensively exposed north of the glacier in the Britannia 
Range. All three units are intruded by plutons referred 
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to as the Granite Harbour Intrusives (Gunn and Warren, 
1962), including monzo- and syenogranites, 
granodiorites and rare gabbros. 

The Byrd and Selborne Groups 
The Byrd and Selborne Groups are made up of 

anchimetamorphic to lower amphibolite-facies rocks, 
respectively. The Byrd group consists of the 
anchimetamorphic Lower Cambrian Shackleton 
Limestone and of the overlying Dick Formation and 
Douglas Conglomerate. Fossil content indicates a 
Lower Cambrian age, spanning from Adtabanian to 
Botomian, or possibly Toyonian (Hill, 1964). Recent 
geochronological data on tuffs and siliciclastic rocks 
confirm the deposition age to the Early Cambrian 
(Goodge et al. 2002; Stump et al., 2004).  

Skinner (1964) designated the amphibolite-grade 
metamorphic rocks as the Selborne Marble. Stump et al. 
(2004) revised the stratigraphy to include Selborne 
Group made up of alternating marbles (Madison 
Marble) and pelitic schists (Contorsion Schist), which 
interfinger at their contact. The Selborne Group is 
characterized by two deformation phases which 
developed under lower amphibolite- and greenschist-
facies conditions. Metaconglomerates and metabasalts 
also occur within the Selborne Group (Stump et al. 
2004). The sequence is intruded by post-kinematic 

granitic plutons dated at 492 ± 2 Ma (Stump et al. 2002; 
2006). Stump et al. (2004) correlated the Byrd Group 
with Selborne Group, Shackleton Limestone with 
Madison Marble and Starshot Formation and Douglas 
Conglomerate with Contortion Schist. 

The Horney unit and associated Granite Harbour 
Intrusives north of Byrd Glacier  

Plutonic and amphibolite-facies metamorphic rocks 
crop out to the north of Byrd Glacier in the Britannia 
Range for its full 75 km length and are known as 
“Horney Formation” (hereafter indicated as Horney 
unit), a “complexly folded amphibolite-grade banded 
gneisses and schists” (Borg et al., 1989). 

Recent field data revealed the occurrence of 
medium- to high-grade metamorphic rocks 
(paragneisses, schists, calc-silicates and amphibolites) 
intruded by granitoids and rare mafic to ultramafic 
bodies. According to Stump et al. (2006) the evolution 
of the Horney Unit includes an early high-grade stage 
with generation of garnet- and amphibole-bearing 
leucosomes at minimum T of 650 °C, followed by 
minor retrogression under lower grade conditions. Large 
bodies and dykes of coarse-grained deformed granitoids 
(mostly porphyritic granodiorites or monzogranites) are 
complexly interlayered with the metamorphic 
sequences. Their deformation is usually concordant with 

Figure 2.  Geological map of the north side of the Byrd glacier and photographs of mesoscale outcrops. a) deformed
granodiorite with relics of magmatic flow textures; b) migmatitic gneisses at the contact with the granodiorite;
c) blobs of pyroxenite within a monzogranite intruding migmatitic gneisses; d) deformed quartz vein within medium-
grade Bt-Amp-bearing paragneisses. 
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the regional foliation of the gneisses. The deformation 
in the granitoids is heterogeneous and clearly developed 
during and after magma emplacement: igneous 
foliations in the porphyritic granitoids are locally well 
preserved (e.g. Mt. Rummage, Darnell Nunatak, Fig.2), 
but most of the intrusives bear evidence of post-
emplacement deformation and are transformed into 
orthogneisses with proto-mylonitic to mylonitic 
structures (eg. Bucknell Ridge, Mt. Rich, Fig. 3,4). 
Undeformed plutons, related to late- to post-kinematic 
igneous activity mainly consist of fine- to medium-
grained granites or two-mica leucogranites. Published 
geochronological data confirm the occurrence of two 
main groups of granitoids: the pre-to syn-kinematic with 
ages spanning from about 550 to 530 Ma and the late- to 
post-kinematic granites with ages between 515 and 490 
Ma. (Encarnación and Grunow 1996; Stump et al. 2006; 
Cottle and Cooper 2006a,b; Cottle, personal 

communication). Mafic-ultramafic rocks form small 
isolated bodies throughout the region comprised 
between the Byrd and Darwin Glaciers. Fresh 
hornblendite to melagabbro cumulates crop out in the 
central part of the Bucknell Ridge (northern side of the 
Darwin Glacier, Fig. 4) within a composite para- and 
orthogneiss sequence. Similar rocks are found also in 
isolated meter-scale blobs within the granitoids 
(Ramseyer Glacier) and as enclaves within the large 
gabbro-dioritic Fontaine Pluton, cropping out some 30 
km north of the Darwin Glacier and interpreted by 
Cottle and Cooper (2006a) as a calc-alkaline gabbro-
dioritic body (zircon U/Pb upper discordia intercept age 
at: 546 ± 10 Ma).  

Structure and evolution S of the Byrd Glacier 
Fold axes in the Byrd Group from the central 

Churchill  Mountains (southern side of the Byrd 

Figure 3.  Geology on the north side of the Darwin Glacier:  a) mylonitic fabrics within granodioritic orthogneisses;   
b) monzogranitic orthogneiss with relict rafts of host-paragneisses; c) granodioritic orthogneiss. See Figure 2 for the 
Legend. 
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Glacier) to the Nimrod Glacier area (about 300 km 
south of the Byrd glacier) follow general N-S trends. In 
the northern Churchill Mountains N-S and E-W 
orientations are common in places, whereas in the area 
immediately south of Byrd Glacier fold axes trend ENE 
sub-parallel to the glacier (Grindley and Laird, 1969).  

Although only one generation of folding was 
generally recognized in the Shackleton Limestone, the 
fact that folded Shackleton Limestone is overlain 
unconformably by deformed Douglas Conglomerate in 
the Holyoke Range demonstrates that Shackleton 
Limestone was deformed at least twice in at least some 
localities (Rowell et al., 1988).  

Skinner’s (1965) map of the Mt. Madison massif 
shows fold trends ENE-WSW, NNW-SSE, and NW-SE 
at various places on the massif. According to Stump 
(1980) the S1 foliation is represented by a biotite-
bearing discontinuous layering. F1 fold closures with 
tight to isoclinal profiles are observed, suggesting a 

transposition of the original bedding. The S1 foliation is 
overprinted by a crenulation cleavage (S2), associated 
with mesoscopic folding. Schist and marble are 
spectacularly refolded in a complex F1 and F2 fold 
interference pattern on Contortion Spur resulting in a 
Type 3 pattern (classification according to Ramsay, 
1967). The core of a synform, composed of grey- light-
blue marble, has been tightly folded at the mesoscale, 
and plunges shallowly to the northeast. Thin (metre-
scale) layers of marble in schist and schist in marble can 
be traced throughout the outcrop, as well as the thicker 
(tens of meters) layers. The continuity of the individual 
layers of schist and marble at Contortion Spur 
represents the transposed bedding in a sequence of 
interbedded mudrocks and limestones. Both S0 and S1 
strike ENE and dip steeply. 

F1 fold axes trend mainly nearly parallel to L1 
elongation lineation.  This pattern is characteristic of 
sheath folds (Cobbold and Quinquis, 1980) and implies 

Figure 4. Geological map of the eastern Britannia Range and photographs of mesoscale outcrops. a) deformed
granodiorite from Bucknell Ridge; b) cumulate gabbro body (150 meter long) within dominant deformed
granodiorites at Bucknell Ridge; c) rafts of migmatitic gneisses within deformed granodiorites on the N-side of
Merrick glacier; d) deformed granitic dykes within medium grade, Bt-Amp-bearing paragneisses; e) deformed Bt-
Amp-bearing paragneisses with millimeter-scale leuocosomes. See Figure 2 for the Legend. 
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shearing in the plane of foliation in the Mt. Madison 
area during D1 deformation. The S2 crenulation 
cleavage generally strikes NE-SW and the hinges of 
crenulations plunge shallowly. 

Structure and evolution north of the Byrd 
Glacier 

D1 deformation phase north of the Byrd Glacier is 
characterized by the development of a pervasive 
foliation in the orthogneisses and in the paragneisses. 
The deformation is heterogeneous and often localized 
within discrete shear zones (with development of 
mylonites) and in the less competent lithologies (pelitic 
paragneisses and calc-silicates). South of the De Vries 
Glacier and at Horney Bluff the most pelitic lithologies 
show tight isoclinal folds developing a feeble axial 
plane foliation. S1 foliation trends NNE-SSW to NE-
SW moderately to steeply dipping to the WNW and NW 
respectively. F2 fold axes trend nearly E-W and mainly 
plunge to the west. Meter-scale shear zones are frequent 
and strike from nearly NNE-SSW to nearly E-W, with a 
WNW and north dip respectively. Locally they display 
an oblique elongation lineation. Stretching lineations in 
the mylonites, asymmetric F2 folds and the overall 
pattern of shortening and stretching direction of granitic 
dykes point to a top to the NE and SE shearing after the 
D1 deformation episode. 

At Darnell Ntk. and Mt. Rummage (upper Byrd) the 
porphyritic granodiorites and monzogranites intrude 
concordantly the migmatitic paragneisses and show a 
well-developed igneous foliation characterized by 
statistical alignment of porphyritic K-Feldspar. Foliation 
in the paragneisses is concordant and strikes NE-SW 
(plunge to the NW) with a stretching lineation trending 
WNW-ESE. 

In the Brown Hills (north side of the Darwin Gl.) a 
shear zone, several hundreds of meters thick, transposes 
a complex sequence of ortho- and paragneisses. Trails 
of less deformed hornblende-bearing gabbros-
gabbrodiorites and rare melagabbro locally occur within 
the mylonitic sequence. The mafic boudins preserve 
igneous textures with euhedral hornblende, euhedral to 
subhedral plagioclase and poikilitic biotite. Field 
relationships clearly point to intrusion of mafic melts 
during the early stages of development of the shear 
zone. Subconcordant (and slightly deformed) to 
discordant (undeformed) aplitic dykes intrude the whole 
sequence. The dominant foliation in the entire area, 
comprising Mt. Rich and the Diamond Hills, dips to the 
east or ESE. Oblique stretching lineations and kinematic 
indicators like en-echelon boudins and asymmetric 
porphyroclasts suggest a top to the NE sense of shear. 

Tectono-metamorphic evolution of the Byrd 
Glacier area 

Based on new field data and recent published 
contributions a new geological map of the Britannia 
Range area has been produced: this integrates and 

refines the published maps that covered only partially in 
the area of interest (Haskell et al. 1964; Grindley and 
Laird 1969; Encarnación and Grunow 1996; Simpson 
and Cooper 2002).   

A complex sequence of deformation and intrusions 
has been highlighted. Metamorphic rocks are dominated 
by strongly deformed Bt ± Grt and Hbl gneisses, often 
characterized by the occurrence of Hbl-bearing 
leucosomes and migmatitic textures. Sequences of fine-
grained pelitic schists or two-mica gneisses, interlayered 
with rare amphibolites and calcsilicate-fels locally 
occur. The metamorphic sequence is intruded, mostly 
concordantly by large amounts of pre- to syn-kinematic 
granodioritic to monzogranitic magma. Deformation in 
the granitoids is strongly heterogeneous and rare 
preserved igneous foliations are often overprinted by 
almost mylonitic gneissic textures. Undeformed granites 
are limited to few outcrops in the Britannia Range but 
their occurrence increases towards the north. 
Accordingly, recent published data (Stump et al. 2004, 
Cottle and Cooper, 2006a,b) point to the occurrence of 
old (550-530 Ma) and young (510-490 Ma) magmatic 
products. This confirms that even in this region two 
main magmatic pulses may be envisaged, like recently 
proposed for South Victoria Land (Allibone et al. 
1993a,b; Encarnaciòn and Grunow 1996; Goodge and 
Fanning, 1999; Allibone and Wysoczansky 2002). 

It is worth noting that the oldest plutonic pulses (545 
± 7 Ma and 531 ± 8: Stump et al. 2006) north of the 
Byrd Glacier occurred at the same time as deposition of 
Shackleton Limestone and lower Starshot Formation 
(Botomian), now located ~40 km to the south on the 
southern side of the Byrd Glacier. Plutonic rocks of this 
age are also recognized further north in Darwin Glacier 
area (Cottle and Cooper 2006a,b). In contrast, Late 
Cambrian- Early Ordovician magmatism occurs on both 
sides of Byrd Glacier (Stump et al. 2006). The related 
undeformed magmatic rocks crosscut the regional 
structures. This implies that the Byrd Glacier 
discontinuity represents a crustal-scale structure whose 
activity most likely ceased before the onset of the late-
Ross igneous activity. This tectonic event is responsible 
for a severe relative uplift of the northern sector with 
respect to the southern one, if we consider that oldest 
(550-530 Ma) plutonism north of Byrd Glacier is coeval 
with (or predates) the platform carbonate deposition to 
the south of Byrd Glacier. The new field survey further 
highlights the occurrence of a first-order orogen-
perpendicular structure developed for nearly one 
hundred kilometres across the general NNW-SSE trend 
of the Ross Orogen. 
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